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Abstract. The dynamics of vibrational energy relaxation by collisions in molecular beams 
and free jet expansions are examined. Within the stochastic approach afforded by the use of 
the master equation, the incomplete relaxation process may be modelled by assuming a 
time-dependent transition rate matrix. In particular, we prove that for non-degenerate 
levels and weak interactions the state distribution is Boltzmannian if the transition rate 
matrix is of the Landau-Teller type. The ramifications of this result on the analysis of recent 
studies of vibrational relaxation in seeded beams is briefly discussed. 

1. Introduction 

The exchange of energy in inelastic molecular collisions in the gas phase has been an 
important problem in the field of chemical physics for many years. It occurs, for 
instance, in the study of chemical kinetics, in the absorption of sound and in the study of 
shock-wave propagation. Two basic problems are involved in such studies. The first 
consists in calculating from quantum mechanics the transition probabilities for the 
inelastic collision processes. This is a major task in itself and a great number both of 
theoretical and experimental papers have been dedicated to it over the past three 
decades. However, it is not of concern to us here and we refer the interested reader to 
the many excellent reviews that exist in the literature, such as Ormonde’s paper on 
vibrational relaxation (Ormonde 1975). 

The object of this paper is to contribute to the elucidation of the second aspect of 
internal energy relaxation, namely the investigation of the dynamics of the relaxation 
process in highly non-equilibrium situations. Here one makes certain simplifying 
assumptions as to the form of the transition probabilities in order to concentrate on the 
study of the evolution of the pertinent distribution function. To fix the ideas, we shall 
concentrate on vibrational relaxation, although much of what we shall have to say 
applies to rotational relaxation as well. 

A widely used method of studying vibrational relaxation is to start with the master 
equation 
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where n and m are integers, P n ( t )  is the state probability at time t and W,,(t) is the 
transition probability per unit time from state m to state n, which is, in general, a 
function of time. The derivation of this equation from the microscopic laws poses well 
known problems concerning the role played by irreversibility and the meaning of the 
word 'state' (Van Kampen 1962), but these questions lie beyond our present concern. 
Alternatively, one can assume from the start that vibrational relaxation can be 
described as a stochastic Markov process. Then equation (1) is nothing more than the 
Chapman-Kolmogorov equation. In any case, the important fact from our viewpoint is 
that the transition rates W,,(t) are supposed to be given and determined by the 
properties of the system under consideration. Once a model for the transition rates is 
assumed, the problem becomes a purely mathematical one, namely, the integration of 
the system of ordinary differential-difference equations (l), subject to appropriate 
initial conditions. 

Probably the most famous model of vibrational relaxation is the Landau-Teller (LT) 
model (Landau and Teller 1936) which is briefly reviewed in the next section. 
Applications using similar ideas have also been given by Rubin and Shuler (1956a, b), 
Montroll and Shuler (1957) and others, and have been reviewed by Oppenheim et a1 
(1967). In all these studies, the relaxing system is supposed to be kept in contact with a 
heat reservoir at constant temperature. Consequently, the relaxation process is always 
completed, which means that, in the absence of external influences, the final dis- 
tribution will correspond to a situation of absolute equilibrium. Then the principle of 
detailed balance holds and one has 

W,,P'," = W,,P',9, (2) 

which is a symmetry property of the (time-independent) transition rates, since the 
equilibrium distribution is known from equilibrium statistical mechanics. If, however, 
the system is not closed and isolated, or is not in contact with a constant-temperature 
heat reservoir, then detailed balance does not hold (Klein 1955, Van Kampen 1975). 
Consequently, even if a stationary state P" exists, no relation like (2) with Pst in lieu of 
P" can be assumed. 

The content of the above remarks has been known for many years. In particular, the 
principle of detailed balance, which simplifies the solution of the master equation, has 
been systematically used, Recently, however, the coupled use of lasers and supersonic 
molecular beams in spectroscopic studies (for a recent review see Levy (1980)) has 
made it necessary to take a critical look at this problem. From the point of view of the 
spectroscopist, the use of supersonic molecular beams, or supersonic free jet expan- 
sions, allows the preparation of internally cold, isolated gas phase molecules on which 
spectroscopy is easy to do. It is also important to know, however, to what degree 
internal energy relaxation has proceeded during the expansion. In fact, as the gas 
expands, the translational degrees of freedom cool down rather quickly and they act as a 
refrigerant for the internal degrees of freedom. As the expansion proceeds, the density 
drops and eventually becomes too low to provide the collisions necessary for the 
internal degrees of freedom to equilibrate with the translational bath. Thus internal 
energy relaxation is incomplete, and the steady-state distribution may correspond to a 
highly non-equilibrium situation. 

This description of the incomplete relaxation process makes it obvious that the 
system of interest (i.e. the internal degrees of freedom) is in contact with a 'bath' (the 
translational degrees of freedom) whose temperature is not constant, but decreases as a 
function of time or, equivalently, of the distance along the symmetry axis of the 
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molecular beam. Consequently the principle of detailed balance cannot be used and the 
problem of solving the master equation becomes rather more difficult. It is to the 
elucidation of this incomplete relaxation problem that the rest of this paper is devoted. 

2. The Landau-Teller model of vibrational relaxation 

Consider an ensemble of harmonic oscillators with fundamental frequency w,  in contact 
with a heat bath at constant temperature To. Assume that the concentration of 
oscillators is sufficiently small that energy transfer occurs only between the oscillators 
and the heat bath. Further, suppose that the excitation of the molecular vibrations 
through collisions can be calculated with the help of first-order perturbation theory. 
Under these conditions, the matrix element of the perturbation energy corresponding 
to a change n + (n + 1) in the vibrational quantum number is proportional to (n + 1)l". 
Thus the transition probability between adjacent states of the oscillator is given by 

(3) 

where C = Clo. This is the model introduced by Landau and Teller (1936) in their study 
of sound adsorption. As discussed by them, it is a reasonable approximation whenever 
the vibrational amplitude is small with respect to the distance over which the pertur- 
bation energy changes appreciably. With the help of (3) the transition rates can be 
simply written as 

C n m  = C[(m + 1 ) a n - l . m  + m&+l,ml, 

Wn,n+l= Z*Cn,n+l ,  (4) 

Wnt1.n = ZGCn+l ,n ,  ( 4 4 )  

where z is the number of collisions per second and @ and 6 are appropriate constants. 
The transition rate matrix which enters the master equation can then be derived 

easily. Because detailed balance (2) holds and the selection rule for this model is 
An = * 1, we have 

Wn+l,n = Wn,n+l exp(-Pohw), ( 5 )  

where PO= l/kBTo and kB is the Boltzmann constant. Then we have 

Wn,n+l= (n  + 1)zGC (n + 1) W, (6) 
Wn,n-l = nzGC = n W exp(-pohw), (7) 

where W = Wol, Thus, the master equation takes on the form 

d 
- P n  = n eXp(-pohw)pn-i(7) + (n  + l)Pn+i(T)-[n i- ( n  + 1) eXp(-pohw)]Pn(7), (9) d7 

where r =  Wt is a scaled time variable. With appropriate initial conditions, e.g. a 
Boltzmann distribution at a temperature T different from the bath temperature To, 

(10) 
the solution of (9 )  can be easily obtained by means of the generating function technique. 

~ " ( 0 )  = (1 - e-8hw) 
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The details are given by Oppenheim et ai (1967), and the result is 
~ ~ ( 7 )  = (1 - e-e'") e-"@"', (11) 

where 

Thus the relaxation to absolute equilibrium is seen to proceed through a series of 
Boltzmann distributions; in current terminology (Andersen et a1 1964b), the state 
probability is said to have the property of canonical invariance. When canonical 
invariance is obeyed, it is then always possible to give meaning to the concept of 
non-equilibrium temperature. For instance, equation (1 1) can be rewritten in terms of 
a time-dependent vibrational temperature TV(7) = b / k g @ ( ~ ) .  It is also obvious that in 
a given data analysis one can easily test for canonical invariance by plotting the 
logarithm of the state probability P, (7) against the quantum number n. 

Andersen et a1 (1964a, b) have studied the conditions under which the state 
distribution maintains the canonical property throughout the relaxation process. Their 
result is summarised in a theorem stating the necessary and sufficient conditions on the 
energy levels and the form of the rate matrix for the state distribution to be canonical. In 
the course of their proof the condition of detailed balance is explicitly used. 

In view of the experiments with molecular beams or free jets mentioned above, 
where detailed balance does not hold, one would thus be led to expect vibrational 
relaxation in such cases to proceed non-canonically. However, recent experiments by 
Bennewitz and Buess (1978) show that this is not necessarily so. In fact, using the 
seeded-beam technique, they studied the incomplete relaxation of the vibrational 
distributions of CsF and LiF. Only in a few cases, e.g. CsF+ N2 and CsF+ C02, did they 
find significant deviations from the canonical invariance condition. In P 3 we analyse in 
some detail the reasons behind this behaviour. 

3. The generalised LT model for incomplete relaxation 

The experimental situation referred to in 0 2 may be modelled as follows. Consider a 
very dilute mixture of harmonic oscillators in a monatomic gas. At the initial time t = 0 
the system is in equilibrium at a given temperature To. Then the gas is allowed to 
expand rapidly in vacuum. As in the LT model, we allow transitions to occur only 
between adjacent levels, so that the selection rule is still An = * l .  The transition rates, 
however, are now taken to be monotonically decreasing functions of time. 
Consequently we write the transition rate matrix as 

Wnm = ~ ( t ) [ ( m  + 1)y(f)&-l,m + m & + ~ . m l ,  (13)  

where CL ( t )  and y ( t )  are arbitrary functions of time, with F ( t )  -* 0 and y ( t )  < OD as t -* W. 
Thus we see that F ( t )  can be interpreted physically as a quantity proportional to the 
number of collisions per unit time. The master equation then becomes 

P f l ( t )  =p(t)C(n + l)P,+l(t)+nyP,-l(t)-(n + l ) y ~ , , ( t ) - n ~ , ( t ) ]  (14) 

namely, a non-autonomous system of ordinary diff erential-difference equations. Since 
CL ( t )  + 0, it is clear that the traditional way of finding steady-state solutions-namely 



Stochastic models of incomplete vibrational relaxation 877 

setting Pn(t) = O-does not apply in this case. It is also to be noticed that the transition 
rates (13) do not obey detailed balance. 

A master equation of the type (14) has also been used by Bennewitz and Buess 
(1978) to analyse their vibrational relaxation data. However, our present concern is not 
so much in the practical use of equation (14) to fit experiment, but rather in its 
theoretical implications as to the dynamics of the relaxation process. In order to see 
this, we now proceed to solve equation (14) subject to the initial condition 

P"(0) = (1 -a )a"  (15) 
where we have set a = exp(-pohw). We note that equation (15) is appropriate to the jet 
expansion case. We now introduce the generating function 

in terms of which equation (14) becomes a first-order linear partial differential equation 

(17) aF/at - P ( x  - I)(YX - 1) aF/ax - ~ Y ( x  - 1 ) ~  = 0, 

and the initial condition reads 

F(0,  X )  = (1 - ~ ) / ( l -  ax). (18) 

By using the method of characteristics it is a straightforward matter to show that the 
solution of (17) is given by 

where 

M ( t )  = [ p ( t )  exp (1 p(t)[l - r (t)l dr) dt, (21) 

and Ao= A(t = 0) ,  Mo=M(t  = 0). Consequently the state probability distribution is 
given by 

and this can be written, of course, in the canonical form 
-em)  e-ne(r), Pn(t)  = (1 -e  

where 

Thus the generalised LT model predicts that incomplete vibrational relaxation in a beam 
or jet proceeds via a continuous sequence of Boltzmann distributions, from the initial 
value given by equation (15) to the final one 

( 2 5 )  Pn(tm) = (1 - exp[-@(tm)B exp[-ne(tm)l 



878 D P Green wood, G Tenti and F R McccOurt 

which is reached when the collision number is practically zero and the functions A and 
M have reached their asymptotic values A ( t m )  and M(tm). As mentioned above, this 
behaviour has been confirmed experimentally for several systems (Bennewitz and 
Buess 1978). For all these cases a ‘time-dependent vibrational temperature’ Tv(t) can 
be meaningfully defined. 

The results above have a great deal of theoretical interest, quite apart from the 
capability of the model in explaining certain experimental observations, since they show 
clearly the difference between complete and incomplete relaxation. In a closed and 
isolated system, the relaxation of the internal energy may proceed either canonically, 
i.e. via a series of Boltzmann distributions, or non-canonically. In either case, however, 
as long as absolute equilibrium is the final result, the principle of detailed balance holds. 
In contrast to this behaviour, incomplete relaxation may proceed canonically, even 
though detailed balance does not hold. When this occurs, as in the generalised 1-1- model 
just described, we may think of the relaxation process as a succession of ‘local 
equilibrium’ distributions which reach asymptotically in time a steady-state regime; but 
this does not imply that transitions between any two states take place with equal 
frequency in either direction. Thus the concept of ‘local equilibrium’ refers only to the 
possibility of defining meaningfully a macroscopic ‘time-dependent temperature’ in 
very-far-from-equilibrium situations. Of course, the argument is even stronger when 
incomplete relaxation proceeds non-canonically. This has a bearing on much of the 
work which is currently being done in laser spectroscopy of cold molecules, and we shall 
make further comments about this in Q 5 .  

4. Non-canonical relaxation: the Bennewitz-Bness model 

As we have just seen in 5 3, canonical incomplete relaxation occurs only in extremely 
specialised cases. For vibrational relaxation, the non-equilibrium distribution function 
evolves according to a continuous series of Boltzmannians if the time-dependent rates 
are linear in the vibrational quantum number and transitions are allowed only between 
adjacent states. Processes involving two or more steps, or transition probabilities which 
are nonlinear in the quantum number, are regulated by a non-Boltzmannian dis- 
tribution of the state probability. 

The influence of nonlinear rates on the dynamics of the relaxation process was first 
studied by Rubin and Shuler (1956b) for an idealised system of harmonic oscillators in 
contact with a constant-temperature heat bath. They assumed nearest-neighbour 
transitions and transition probabilities of the form 

where p and a are parameters, and found a non-equilibrium distribution which shows a 
clear non-Boltzmann character. On the one hand, when (26) is used the master 
equation becomes hopelessly complicated, and Rubin and Shuler made recourse to the 
continuum approximation in order to find the approximate analytical behaviour. On 
the other hand, finding the equilibrium solution presents no difficulty. In fact, since the 
bath is kept at constant temperature during the relaxation process, the equilibrium 
solution coincides with the steady-state solution, and the latter can be found straight- 
forwardly from the master equation by setting f i n ( t )  = 0. However, as we have already 
seen, this method fails when the system is in contact with a ‘bath’ whose temperature 
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decreases rapidly in time, or, equivalently, when the collision number rapidly vanishes. 
It is therefore of interest to study this case in some detail. 

Both the LT transition probabilities (3) and the exponential model (26) require the 
constants appearing there to be small enough that C,, < 1. In order to avoid this 
limitation, Bennewitz and Buess (1978) postulated transition probabilities of the form 

c,,,,,+~ = 1 - (1 - C) e-? (27) 
These tend to unity for systems where C is large, while in the opposite limit of weak 
interactions they correctly reduce to the ordinary LT model. Bennewitz and Buess used 
the model (27) to fit their vibrational relaxation data in systems such as CsF+C02, 
where deviations from the Boltzmann distribution are noticeable. Presumably they 
integrated the master equation numerically, but these deviations can also be studied 
analytically, albeit approximately, as the following calculation shows. 

The assumption (27) implies a transition rate matrix of the form 

w,,, = p ( t ) { [ l -  (1 - C) e-fm-l)CISn+l,m + y ( t ) [ l -  (1 - C) e-mC]~fl-l,m}, 

so that the master equation becomes 

where 

(28) 

PtI = CL(f){fb)PiI+1(0+ yg(n)P,-l(O-[g(n) + rf(n>lPfl( t )} ,  

f ( n )  = 1 - (1 - C) e-"C, 

g(n) E 1 - (1 - C) 

(29) 

(30) 

(31) 
Obviously the generating function technique does not work in this case. However, since 
we are interested only in the qualitative behaviour of P,(t) predicted by equation (29), 
we can have recourse to the approximation in which the quantum number n is 
considered as a continuous variable. As is well known (Oppenheim et a1 1967), this 
approximation leads to the formal equation 

where 

and the A(n, n + j )  are the coefficients of the master equation. In the case of equation 
(29) this gives 

ao=CL(y-l)[g(n)-f(n)I, (34) 
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Next, we note that the parameter y is nothing other than the ratio of the rates for 
upward and downward transitions, as may easily be seen from equation (28). We write 

w,,+l,,(t)/W,.,,+l(t) = Y(t)=e-"(", (38) 
and postulate that in the continuum limit E << 1, i.e. y = 1. This means physically that 
transitions upward and downward can occur with equal ease in the limit considered 
here, as can reasonably be expected. Furthermore, the function P,, = (1 -e -")  e-"" 
makes the term in braces in equation (29) vanish. Hence it is a steady-state solution for 
the case ~ ( t )  # 0, and implies that 

aip 
7= an o[(-&)ip]* (39) 

Although this argument, strictly speaking, breaks down in the case when p ( t )  -* 0, we 
shall consider it reasonable to retain (39) as an approximate evaluation of the order of 
the derivatives with respect to n. We shall use this assumption and the expansion of 
equation (38) in order to truncate equation (37). In particular, dropping terms of order 
e2P(n,  t) and higher, we obtain 

This is a first-order partial differential equation which can be integrated by standard 
methods. In particular, for an initial Boltzmann distribution of the type (15), it is 
straightforward to derive the solution 

t (41) P(n,  t )  -[1 -e~p(-@~ho)]e-""{a[m(t)-m(O)]+e } flc ( E - B o h W ) / C  

where we have set 

a E C(I - C)(eC - I) 

and 
(42) 

(43) 

A more transparent form of the solution is obtained if equation (41) is written in the 
form 

) ( E  1 + a [ m ( t ) - m ( O ) ]  ' 
eflC+a[m(r)-m(0)] P(n,  t )  

c ln-- 
P(0,  f )  - -?lE + 

(44) 

which explicitly exhibits the deviations from a straight-line behaviour in a plot of the 
left-hand side against n. The sign of the deviation depends on the relative magnitudes 
of E and /30Ztw. It should be noticed that the dimensionless parameter E, which is related 
to the ratio of the forward to the backward rates, is not related to the dimensionless 
energy Pohw, since this relation could only arise from the imposition of detailed 
balance, and detailed balance does not hold in the system under consideration here. 
This is important to keep in mind in connection with our approximation (40) to the 
master equation (29). Such an approximation would not be a reasonable one for the 
case of a closed and isolated system. For then detailed balance would hold and equation 
(38) would have to coincide with equation ( 5 ) ,  which means that the parameter 
E = pohw and the state distribution would remain the initial equilibrium one at all times. 
On the other hand, for systems where the collision number (i.e. the parameter p ( t ) )  



Stochastic models of incomplete vibrational relaxation 881 

tends rapidly to zero, we have E # PoRw and m ( t )  < +a. Thus the state distribution will 
be quickly frozen in a non-equilibrium situation and equation (44) gives an indication 
that even the crudest approximate solution of the master equation exhibits non- 
canonical behaviour. 

5. Summary and concluding remarks 

We have analysed in this paper some examples of incomplete vibrational relaxation 
according to the master equation. Assuming that the transition rates are given by a 
specified model, we have concentrated on the dynamics of systems which are in contact 
with a time-dependent temperature ‘bath’, where the state distribution becomes 
quickly frozen in a non-equilibrium configuration, and contrasted it with the more 
familiar case of ordinary relaxation in closed and isolated systems (Oppenheim et a1 
1967). 

The main results of our analysis are the following. Firstly, the principle of detailed 
balance does not apply, even though a stationary solution of the master equation exists. 
Secondly, this stationary solution cannot be found by the usual method of setting P,, = 0. 
Rather, one must first solve the master equation and only afterwards take the limit as 
the collision number tends to zero. Finally, we have shown that if the assumptions 
behind the LT model rates hold, then the relaxation process proceeds through a 
continuous series of time-dependent Boltzmann distributions, even for the case of 
incomplete relaxation. In view of the fact that several systems have been found to obey 
canonical invariance (Bennewitz and Buess 1978), this result makes the Landau-Teller 
model much more remarkable than perhaps previously thought. 

The results above have been derived under a number of simplifying assumptions, 
notably that the energy levels are non-degenerate and that the vibrational degrees of 
freedom can be treated by the harmonic oscillator approximation. Thus the extrapola- 
tion to other cases of incomplete relaxation must be made with care. There is, however, 
a remark of general validity which we would like to make, and it concerns the fact that in 
any situation where incomplete relaxation prevails, the principle of detailed balance 
does not hold. This has a bearing on much of the work which is currently being done in 
laser spectroscopy of cold molecules (Levy 1980), in which molecular beams or jets are 
used. In many cases-and especially for incomplete rotational relaxation-non- 
Boltzmann distributions are observed. A popular explanation of this fact is the 
exponential rate model, originally proposed by Polanyi and Woodall (1972), and 
currently called ‘the exponential gap law’ (EGL) (Feldmann and Ben-Shaul 1979, 
Gayatri and Sathyamurthy 1980). This model is based on the plausible idea that the 
probability of the collisional transition X Y ( n )  + M  + X Y ( m )  + M  is dominated by an 
exponentially decreasing function of the energy gap IE,, -Em 1, without restrictions on 
the optical selection rule. Thus one postulates that the downward transition rate is 
given by 

Wm, = a exp[-b(E, -Em)]  (n  > m )  (45) 

where a and b are two adjustable parameters. Next one invokes the principle of 
detailed balance, as a means of relating the downward to the upward transition rates, to 
obtain 

W n m  = a exp[-(b +P)(En - E m 1 1  (n > m )  (46) 
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where f l  is the usual inverse thermal energy of the bath. Thug it is implicit in equation 
(46) that one is postulating the instantaneous equilibration of the relaxing degrees of 
freedom with the translational heat bath, so that an equilibrium state may be said to 
exist. It appears to us, however, that in the case of molecular beams or free jet 
expansions such assumptions become questionable, since the rapid decrease in time (or 
along the axis of the beam) of the collision number makes it unlikely that any kind of 
equilibrium situation may exist. 
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